Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioorg Chem ; 143: 107032, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38128204

RESUMO

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains a worldwide scourge with more than 10 million people affected yearly. Among the proteins essential for the survival of Mtb, InhA has been and is still clinically validated as a therapeutic target. A new family of direct diaryl ether inhibitors, not requiring prior activation by the catalase peroxidase enzyme KatG, has been designed with the ambition of fully occupying the InhA substrate-binding site. Thus, eleven compounds, featuring three pharmacophores within the same molecule, were synthesized. One of them, 5-(((4-(2-hydroxyphenoxy)benzyl)(octyl)amino)methyl)-2-phenoxyphenol (compound 21), showed good inhibitory activity against InhA with IC50 of 0.70 µM. The crystal structure of compound 21 in complex with InhA/NAD+ showed how the molecule fills the substrate-binding site as well as the minor portal of InhA. This study represents a further step towards the design of new inhibitors of InhA.


Assuntos
Antituberculosos , Imidazóis , Mycobacterium tuberculosis , Sulfonamidas , Tiofenos , Humanos , Antituberculosos/farmacologia , Antituberculosos/química , Éter , Éteres , Sítios de Ligação , Etil-Éteres , Proteínas de Bactérias/metabolismo
2.
Eur J Med Chem ; 259: 115646, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37482022

RESUMO

Tuberculosis (TB) caused by Mycobacterium tuberculosis (Mtb) affects 10 million people each year and the emergence of resistant TB augurs for a growing incidence. In the last 60 years, only three new drugs were approved for TB treatment, for which resistances are already emerging. Therefore, there is a crucial need for new chemotherapeutic agents capable of eradicating TB. Enzymes belonging to the type II fatty acid synthase system (FAS-II) are involved in the biosynthesis of mycolic acids, cell envelope components essential for mycobacterial survival. Among them, InhA is the primary target of isoniazid (INH), one of the most effective compounds to treat TB. INH acts as a prodrug requiring activation by the catalase-peroxidase KatG, whose mutations are the major cause for INH resistance. Herein, a new series of direct InhA inhibitors were designed based on a molecular hybridization approach. They exhibit potent inhibitory activities of InhA and, for some of them, good antitubercular activities. Moreover, they display a low toxicity on human cells. A study of the mechanism of action of the most effective molecules shows that they inhibit the biosynthesis of mycolic acids. The X-ray structures of two InhA/NAD+/inhibitor complexes have been obtained showing a binding mode of a part of the molecule in the minor portal, rarely seen in the InhA structures reported so far.


Assuntos
Antituberculosos , Mycobacterium tuberculosis , Humanos , Antituberculosos/farmacologia , Antituberculosos/química , Proteínas de Bactérias/metabolismo , Éter , Éteres/farmacologia , Etil-Éteres/farmacologia , Isoniazida/farmacologia , Mutação , Ácidos Micólicos
3.
J Mol Biol ; 435(10): 168048, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36933821

RESUMO

Knr4/Smi1 proteins are specific to the fungal kingdom and their deletion in the model yeast Saccharomyces cerevisiae and the human pathogen Candida albicans results in hypersensitivity to specific antifungal agents and a wide range of parietal stresses. In S. cerevisiae, Knr4 is located at the crossroads of several signalling pathways, including the conserved cell wall integrity and calcineurin pathways. Knr4 interacts genetically and physically with several protein members of those pathways. Its sequence suggests that it contains large intrinsically disordered regions. Here, a combination of small-angle X-ray scattering (SAXS) and crystallographic analysis led to a comprehensive structural view of Knr4. This experimental work unambiguously showed that Knr4 comprises two large intrinsically disordered regions flanking a central globular domain whose structure has been established. The structured domain is itself interrupted by a disordered loop. Using the CRISPR/Cas9 genome editing technique, strains expressing KNR4 genes deleted from different domains were constructed. The N-terminal domain and the loop are essential for optimal resistance to cell wall-binding stressors. The C-terminal disordered domain, on the other hand, acts as a negative regulator of this function of Knr4. The identification of molecular recognition features, the possible presence of secondary structure in these disordered domains and the functional importance of the disordered domains revealed here designate these domains as putative interacting spots with partners in either pathway. Targeting these interacting regions is a promising route to the discovery of inhibitory molecules that could increase the susceptibility of pathogens to the antifungals currently in clinical use.


Assuntos
Proteínas Intrinsicamente Desordenadas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Humanos , Parede Celular/metabolismo , Proteínas Intrinsicamente Desordenadas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Espalhamento a Baixo Ângulo , Fatores de Transcrição/metabolismo , Difração de Raios X
4.
Bioorg Med Chem ; 71: 116938, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35933838

RESUMO

Tuberculosis (TB) remains a global health crisis, further exacerbated by the slow pace of new treatment options, and the emergence of extreme and total drug resistance to existing drugs. The challenge to developing new antibacterial compounds with activity against Mycobacterium tuberculosis (Mtb), the causative agent of TB, is in part due to unique features of this pathogen, especially the composition and structure of its complex cell envelope. Therefore, targeting enzymes involved in cell envelope synthesis has been of major interest for anti-TB drug discovery. FAAL32 is a fatty acyl-AMP ligase involved in the biosynthesis of the cell wall mycolic acids, and a potential target for drug discovery. To rapidly advance research in this area, we initiated a drug repurposing campaign and screened a collection of 1280 approved human or veterinary drugs (Prestwick Chemical Library) using a biochemical assay that reads out FAAL32 inhibition. These efforts led to the discovery of salicylanilide closantel, and some of its derivatives as inhibitors with potent in vitro activity against M. tuberculosis. These results suggest that salicylanilide represents a potentially promising pharmacophore for the conception of novel anti-tubercular candidates targeting FAAL32 that would open new targeting opportunities. Moreover, this work illustrates the value of drug repurposing campaigns to discover new leads in challenging drug discovery fields.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Monofosfato de Adenosina/uso terapêutico , Antituberculosos/química , Avaliação Pré-Clínica de Medicamentos , Humanos , Salicilanilidas , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia
5.
Pharmaceuticals (Basel) ; 14(12)2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34959681

RESUMO

The mycolic acid biosynthetic pathway represents a promising source of pharmacological targets in the fight against tuberculosis. In Mycobacterium tuberculosis, mycolic acids are subject to specific chemical modifications introduced by a set of eight S-adenosylmethionine dependent methyltransferases. Among these, Hma (MmaA4) is responsible for the introduction of oxygenated modifications. Crystallographic screening of a library of fragments allowed the identification of seven ligands of Hma. Two mutually exclusive binding modes were identified, depending on the conformation of residues 147-154. These residues are disordered in apo-Hma but fold upon binding of the S-adenosylmethionine (SAM) cofactor as well as of analogues, resulting in the formation of the short η1-helix. One of the observed conformations would be incompatible with the presence of the cofactor, suggesting that allosteric inhibitors could be designed against Hma. Chimeric compounds were designed by fusing some of the bound fragments, and the relative binding affinities of initial fragments and evolved compounds were investigated using molecular dynamics simulation and generalised Born and Poisson-Boltzmann calculations coupled to the surface area continuum solvation method. Molecular dynamics simulations were also performed on apo-Hma to assess the structural plasticity of the unliganded protein. Our results indicate a significant improvement in the binding properties of the designed compounds, suggesting that they could be further optimised to inhibit Hma activity.

6.
Sci Rep ; 11(1): 18042, 2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34508141

RESUMO

Owing to their role in activating enzymes essential for bacterial viability and pathogenicity, phosphopantetheinyl transferases represent novel and attractive drug targets. In this work, we examined the inhibitory effect of the aminido-urea 8918 compound against the phosphopantetheinyl transferases PptAb from Mycobacterium abscessus and PcpS from Pseudomonas aeruginosa, two pathogenic bacteria associated with cystic fibrosis and bronchiectasis, respectively. Compound 8918 exhibits inhibitory activity against PptAb but displays no activity against PcpS in vitro, while no antimicrobial activity against Mycobacterium abscessus or Pseudomonas aeruginosa could be detected. X-ray crystallographic analysis of 8918 bound to PptAb-CoA alone and in complex with an acyl carrier protein domain in addition to the crystal structure of PcpS in complex with CoA revealed the structural basis for the inhibition mechanism of PptAb by 8918 and its ineffectiveness against PcpS. Finally, in crystallo screening of potent inhibitors from the National Cancer Institute library identified a hydroxypyrimidinethione derivative that binds PptAb. Both compounds could serve as scaffolds for the future development of phosphopantetheinyl transferases inhibitors.


Assuntos
Proteínas de Bactérias/química , Inibidores Enzimáticos/química , Pirimidinonas/química , Transferases (Outros Grupos de Fosfato Substituídos)/química , Ureia/química , Proteínas de Bactérias/antagonistas & inibidores , Sítios de Ligação , Inibidores Enzimáticos/farmacologia , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Mycobacterium abscessus/enzimologia , Ligação Proteica , Pseudomonas aeruginosa/enzimologia , Proteínas Recombinantes , Relação Estrutura-Atividade , Especificidade por Substrato , Transferases (Outros Grupos de Fosfato Substituídos)/antagonistas & inibidores , Ureia/análogos & derivados , Ureia/farmacologia
7.
ACS Chem Biol ; 15(12): 3206-3216, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33237724

RESUMO

Mycobacterium tuberculosis is the causative agent of the tuberculosis disease, which claims more human lives each year than any other bacterial pathogen. M. tuberculosis and other mycobacterial pathogens have developed a range of unique features that enhance their virulence and promote their survival in the human host. Among these features lies the particular cell envelope with high lipid content, which plays a substantial role in mycobacterial pathogenicity. Several envelope components of M. tuberculosis and other mycobacteria, e.g., mycolic acids, phthiocerol dimycocerosates, and phenolic glycolipids, belong to the "family" of polyketides, secondary metabolites synthesized by fascinating versatile enzymes-polyketide synthases. These megasynthases consist of multiple catalytic domains, among which the acyltransferase domain plays a key role in selecting and transferring the substrates required for polyketide extension. Here, we present three new crystal structures of acyltransferase domains of mycobacterial polyketide synthases and, for one of them, provide evidence for the identification of residues determining extender unit specificity. Unravelling the molecular basis for such specificity is of high importance considering the role played by extender units for the final structure of key mycobacterial components. This work provides major advances for the use of mycobacterial polyketide synthases as potential therapeutic targets and, more generally, contributes to the prediction and bioengineering of polyketide synthases with desired specificity.


Assuntos
Mycobacterium/enzimologia , Policetídeo Sintases/metabolismo , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Humanos , Policetídeo Sintases/química , Conformação Proteica , Especificidade por Substrato
8.
Molecules ; 25(5)2020 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-32106588

RESUMO

With the advent of structural biology in the drug discovery process, medicinal chemists gained the opportunity to use detailed structural information in order to progress screening hits into leads or drug candidates. X-ray crystallography has proven to be an invaluable tool in this respect, as it is able to provide exquisitely comprehensive structural information about the interaction of a ligand with a pharmacological target. As fragment-based drug discovery emerged in the recent years, X-ray crystallography has also become a powerful screening technology, able to provide structural information on complexes involving low-molecular weight compounds, despite weak binding affinities. Given the low numbers of compounds needed in a fragment library, compared to the hundreds of thousand usually present in drug-like compound libraries, it now becomes feasible to screen a whole fragment library using X-ray crystallography, providing a wealth of structural details that will fuel the fragment to drug process. Here, we review theoretical and practical aspects as well as the pros and cons of using X-ray crystallography in the drug discovery process.


Assuntos
Descoberta de Drogas , Proteínas/química , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/uso terapêutico , Cristalografia por Raios X , Avaliação Pré-Clínica de Medicamentos , Humanos , Ligantes , Proteínas/uso terapêutico
9.
PLoS One ; 14(10): e0223877, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31603944

RESUMO

The carboxysome is a bacterial micro-compartment (BMC) subtype that encapsulates enzymatic activities necessary for carbon fixation. Carboxysome shells are composed of a relatively complex cocktail of proteins, their precise number and identity being species dependent. Shell components can be classified in two structural families, the most abundant class associating as hexamers (BMC-H) that are supposed to be major players for regulating shell permeability. Up to recently, these proteins were proposed to associate as homo-oligomers. Genomic data, however, demonstrated the existence of paralogs coding for multiple shell subunits. Here, we studied cross-association compatibilities among BMC-H CcmK proteins of Synechocystis sp. PCC6803. Co-expression in Escherichia coli proved a consistent formation of hetero-hexamers combining CcmK1 and CcmK2 or, remarkably, CcmK3 and CcmK4 subunits. Unlike CcmK1/K2 hetero-hexamers, the stoichiometry of incorporation of CcmK3 in associations with CcmK4 was low. Cross-interactions implicating other combinations were weak, highlighting a structural segregation of the two groups that could relate to gene organization. Sequence analysis and structural models permitted the localization of interactions that would favor formation of CcmK3/K4 hetero-hexamers. The crystallization of these CcmK3/K4 associations conducted to the elucidation of a structure corresponding to the CcmK4 homo-hexamer. Yet, subunit exchange could not be demonstrated in vitro. Biophysical measurements showed that hetero-hexamers are thermally less stable than homo-hexamers, and impeded in forming larger assemblies. These novel findings are discussed within the context of reported data to propose a functional scenario in which minor CcmK3/K4 incorporation in shells would introduce sufficient local disorder as to allow shell remodeling necessary to adapt rapidly to environmental changes.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Complexos Multiproteicos/química , Synechocystis/metabolismo , Proteínas de Bactérias/genética , Sítios de Ligação , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Modelos Moleculares , Ligação Proteica , Engenharia de Proteínas , Multimerização Proteica , Estabilidade Proteica , Synechocystis/genética , Termodinâmica
10.
Nat Commun ; 10(1): 1187, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30846693

RESUMO

The original version of this Article contained errors in Figures 1 and 4. In Fig. 1b, the Mtb-SecBTA sequence was displayed incorrectly. In the inset panel within Fig. 4c, the y-axis of the graph incorrectly read (Q.Rg)2 × I(Q)//(0), and should have read (Q.Rg)2 × I(Q)/I(0). These errors have been corrected in both the PDF and HTML versions of the Article.

11.
Nat Commun ; 10(1): 782, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30770830

RESUMO

SecB chaperones assist protein export by binding both unfolded proteins and the SecA motor. Certain SecB homologs can also control toxin-antitoxin (TA) systems known to modulate bacterial growth in response to stress. In such TA-chaperone (TAC) systems, SecB assists the folding and prevents degradation of the antitoxin, thus facilitating toxin inhibition. Chaperone dependency is conferred by a C-terminal extension in the antitoxin known as chaperone addiction (ChAD) sequence, which makes the antitoxin aggregation-prone and prevents toxin inhibition. Using TAC of Mycobacterium tuberculosis, we present the structure of a SecB-like chaperone bound to its ChAD peptide. We find differences in the binding interfaces when compared to SecB-SecA or SecB-preprotein complexes, and show that the antitoxin can reach a functional form while bound to the chaperone. This work reveals how chaperones can use discrete surface binding regions to accommodate different clients or partners and thereby expand their substrate repertoire and functions.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Chaperonas Moleculares/metabolismo , Sistemas Toxina-Antitoxina/fisiologia , Sítios de Ligação , Chaperonas Moleculares/genética , Mycobacterium tuberculosis/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Sistemas Toxina-Antitoxina/genética
12.
Methods Mol Biol ; 1762: 145-178, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29594772

RESUMO

Rational drug design is essential for new drugs to emerge, especially when the structure of a target protein or catalytic enzyme is known experimentally. To that purpose, high-throughput virtual ligand screening campaigns aim at discovering computationally new binding molecules or fragments to inhibit a particular protein interaction or biological activity. The virtual ligand screening process often relies on docking methods which allow predicting the binding of a molecule into a biological target structure with a correct conformation and the best possible affinity. The docking method itself is not sufficient as it suffers from several and crucial limitations (lack of protein flexibility information, no solvation effects, poor scoring functions, and unreliable molecular affinity estimation).At the interface of computer techniques and drug discovery, molecular dynamics (MD) allows introducing protein flexibility before or after a docking protocol, refining the structure of protein-drug complexes in the presence of water, ions and even in membrane-like environments, and ranking complexes with more accurate binding energy calculations. In this chapter we describe the up-to-date MD protocols that are mandatory supporting tools in the virtual ligand screening (VS) process. Using docking in combination with MD is one of the best computer-aided drug design protocols nowadays. It has proved its efficiency through many examples, described below.


Assuntos
Biologia Computacional/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Proteínas/metabolismo , Sítios de Ligação , Desenho de Fármacos , Ligantes , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Proteínas/química
13.
Eur J Med Chem ; 146: 318-343, 2018 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-29407960

RESUMO

The enoyl-ACP reductase InhA from the mycobacterial fatty acid biosynthesis pathway has become a target of interest for the development of new anti-tubercular drugs. This protein has been identified as essential for the survival of Mycobacterium tuberculosis, the causative agent of tuberculosis, and as the main target of two pro-drugs: isoniazid, the frontline anti-tubercular drug, and ethionamide, a second-line medicine. Since most cases of resistance to isoniazid and ethionamide result from mutations in the mycobacterial activating enzyme (KatG for isoniazid and EthA for ethionamide), research of direct InhA inhibitors, avoiding the activation step, has emerged as a promising strategy for combating tuberculosis. Thereby, InhA is drawing much attention and its three-dimensional structure has been particularly studied. A better understanding of key sites of interactions responsible for InhA inhibition arises thus as an essential tool for the rational design of new potent inhibitors. In this paper, we propose an overview of the 80 available crystal structures of wild-type and mutant InhA, in its apo form, in complex with its cofactor, with an analogue of its natural ligands (C16 fatty acid and/or NADH) or with inhibitors. We will first discuss structural and mechanistic aspects in order to highlight key features of the protein before delivering thorough inventory of structures of InhA in the presence of synthetic ligands to underline the key interactions implicated in high affinity inhibition.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Produtos Biológicos/farmacologia , Oxirredutases/antagonistas & inibidores , Oxirredutases/química , Proteínas de Bactérias/metabolismo , Produtos Biológicos/química , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Ligantes , Modelos Moleculares , Estrutura Molecular , Oxirredutases/metabolismo , Relação Estrutura-Atividade
14.
J Mol Biol ; 429(10): 1554-1569, 2017 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-28377293

RESUMO

Dehydration reactions play a crucial role in the de novo biosynthesis of fatty acids and a wide range of pharmacologically active polyketide natural products with strong emphasis on human medicine. The type I polyketide synthase PpsC from Mycobacterium tuberculosis catalyzes key biosynthetic steps of lipid virulence factors phthiocerol dimycocerosates and phenolic glycolipids. Given the insolubility of the natural C28-C30 fatty acyl substrate of the PpsC dehydratase (DH) domain, we investigated its structure-function relationships in the presence of shorter surrogate substrates. Since most enzymes belonging to the (R)-specific enoyl hydratase/hydroxyacyl dehydratase family conduct the reverse hydration reaction in vitro, we have determined the X-ray structures of the PpsC DH domain, both unliganded (apo) and in complex with trans-but-2-enoyl-CoA or trans-dodec-2-enoyl-CoA derivatives. This study provides for the first time a snapshot of dehydratase-ligand interactions following a hydration reaction. Our structural analysis allowed us to identify residues essential for substrate binding and activity. The structural comparison of the two complexes also sheds light on the need for long acyl chains for this dehydratase to carry out its function, consistent with both its in vitro catalytic behavior and the physiological role of the PpsC enzyme.


Assuntos
Acil Coenzima A/química , Acil Coenzima A/metabolismo , Hidroliases/química , Hidroliases/metabolismo , Mycobacterium tuberculosis/enzimologia , Policetídeo Sintases/química , Policetídeo Sintases/metabolismo , Cristalografia por Raios X , Modelos Moleculares , Ligação Proteica , Conformação Proteica
15.
J Struct Biol ; 194(3): 337-46, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26975212

RESUMO

Thanatos associated protein 11 (THAP11) is a cell cycle and cell growth regulator differentially expressed in cancer cells. THAP11 belongs to a distinct family of transcription factors recognizing specific DNA sequences via an atypical zinc finger motif and regulating diverse cellular processes. Outside the extensively characterized DNA-binding domain, THAP proteins vary in size and predicted domains, for which structural data are still lacking. We report here the crystal structure of the C-terminal region of human THAP11 protein, providing the first 3D structure of a coiled-coil motif from a THAP family member. We further investigate the stability, dynamics and oligomeric properties of the determined structure combining molecular dynamics simulations and biophysical experiments. Our results show that the C-ter region of THAP11 forms a left-handed parallel homo-dimeric coiled-coil structure possessing several unusual features.


Assuntos
Multimerização Proteica , Proteínas Repressoras/química , Cristalografia por Raios X , Humanos , Modelos Moleculares , Simulação de Dinâmica Molecular , Domínios Proteicos/fisiologia , Estabilidade Proteica , Estrutura Secundária de Proteína , Proteínas Repressoras/fisiologia
16.
J Biol Chem ; 291(15): 7973-89, 2016 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-26900152

RESUMO

Mycolic acids are essential components of the mycobacterial cell envelope, and their biosynthetic pathway is one of the targets of first-line antituberculous drugs. This pathway contains a number of potential targets, including some that have been identified only recently and have yet to be explored. One such target, FadD32, is required for activation of the long meromycolic chain and is essential for mycobacterial growth. We report here an in-depth biochemical, biophysical, and structural characterization of four FadD32 orthologs, including the very homologous enzymes fromMycobacterium tuberculosisandMycobacterium marinum Determination of the structures of two complexes with alkyl adenylate inhibitors has provided direct information, with unprecedented detail, about the active site of the enzyme and the associated hydrophobic tunnel, shedding new light on structure-function relationships and inhibition mechanisms by alkyl adenylates and diarylated coumarins. This work should pave the way for the rational design of inhibitors of FadD32, a highly promising drug target.


Assuntos
Antituberculosos/farmacologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Desenho de Fármacos , Ligases/química , Ligases/metabolismo , Mycobacterium tuberculosis/enzimologia , Mycobacterium/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/antagonistas & inibidores , Carbono-Enxofre Ligases , Cristalografia por Raios X , Ligases/antagonistas & inibidores , Modelos Moleculares , Dados de Sequência Molecular , Mycobacterium/química , Mycobacterium/efeitos dos fármacos , Infecções por Mycobacterium/tratamento farmacológico , Infecções por Mycobacterium/microbiologia , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/efeitos dos fármacos , Ácidos Micólicos/metabolismo , Conformação Proteica , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia
17.
Acta Crystallogr F Struct Biol Commun ; 71(Pt 9): 1120-4, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26323295

RESUMO

The potentially structured core domain of the intrinsically disordered protein Knr4 from Saccharomyces cerevisiae, comprising residues 80-340, was expressed in Escherichia coli and crystallized using the hanging-drop vapour-diffusion method. Selenomethionine-containing (SeMet) protein was also purified and crystallized. Crystals of both proteins belonged to space group P6522, with unit-cell parameters a = b = 112.44, c = 265.21 Šfor the native protein and a = b = 112.49, c = 262.21 Šfor the SeMet protein, and diffracted to 3.50 and 3.60 Šresolution, respectively. There are two molecules in the asymmetric unit related by a twofold axis. The anomalous signal of selenium was recorded and yielded an electron-density map of sufficient quality to allow the identification of secondary-structure elements.


Assuntos
Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Fatores de Transcrição/química , Clonagem Molecular , Cristalização , Cristalografia por Raios X , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Espectrometria de Fluorescência , Eletricidade Estática , Raios Ultravioleta
18.
J Struct Biol ; 190(3): 328-37, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25891098

RESUMO

InhA is an enoyl-ACP reductase of Mycobacterium tuberculosis implicated in the biosynthesis of mycolic acids, essential constituents of the mycobacterial cell wall. To date, this enzyme is considered as a promising target for the discovery of novel antitubercular drugs. In this work, we describe the first crystal structure of the apo form of the wild-type InhA at 1.80Å resolution as well as the crystal structure of InhA in complex with the synthetic metabolite of the antitubercular drug isoniazid refined to 1.40Å. This metabolite, synthesized in the absence of InhA, is able to displace and replace the cofactor NADH in the enzyme active site. This work provides a unique opportunity to enlighten the structural adaptation of apo-InhA to the binding of the NADH cofactor or of the isoniazid adduct. In addition, a differential scanning fluorimetry study of InhA, in the apo-form as well as in the presence of NAD(+), NADH and INH-NADH was performed showing that binding of the INH-NADH adduct had a strong stabilizing effect.


Assuntos
Proteínas de Bactérias/química , Isoniazida/química , Mycobacterium tuberculosis/enzimologia , Oxirredutases/química , Biomimética/métodos , Domínio Catalítico , NAD/química , Ligação Proteica/fisiologia
19.
PLoS One ; 9(3): e92094, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24643034

RESUMO

Panton-Valentine leukocidin (PVL), a bicomponent staphylococcal leukotoxin, is involved in the poor prognosis of necrotizing pneumonia. The present study aimed to elucidate the binding mechanism of PVL and in particular its cell-binding domain. The class S component of PVL, LukS-PV, is known to ensure cell targeting and exhibits the highest affinity for the neutrophil membrane (Kd∼10(-10) M) compared to the class F component of PVL, LukF-PV (Kd∼10(-9) M). Alanine scanning mutagenesis was used to identify the residues involved in LukS-PV binding to the neutrophil surface. Nineteen single alanine mutations were performed in the rim domain previously described as implicated in cell membrane interactions. Positions were chosen in order to replace polar or exposed charged residues and according to conservation between leukotoxin class S components. Characterization studies enabled to identify a cluster of residues essential for LukS-PV binding, localized on two loops of the rim domain. The mutations R73A, Y184A, T244A, H245A and Y250A led to dramatically reduced binding affinities for both human leukocytes and undifferentiated U937 cells expressing the C5a receptor. The three-dimensional structure of five of the mutants was determined using X-ray crystallography. Structure analysis identified residues Y184 and Y250 as crucial in providing structural flexibility in the receptor-binding domain of LukS-PV.


Assuntos
Toxinas Bacterianas/química , Exotoxinas/química , Leucocidinas/química , Mutação , Neutrófilos/química , Tirosina/química , Alanina/química , Alanina/genética , Sequência de Aminoácidos , Toxinas Bacterianas/genética , Sítios de Ligação , Linhagem Celular , Escherichia coli/genética , Escherichia coli/metabolismo , Exotoxinas/genética , Expressão Gênica , Humanos , Cinética , Leucocidinas/genética , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Alinhamento de Sequência , Staphylococcus aureus/química , Tirosina/genética
20.
Artigo em Inglês | MEDLINE | ID: mdl-22684065

RESUMO

Soluble forms of recombinant LukE protein (expressed in Escherichia coli) and of wild-type LukD protein (expressed in Staphylococcus aureus), which together form the staphylococcal LukE-LukD leukotoxin, were purified to homogeneity and crystallized using the sitting-drop vapour-diffusion method. The crystals of LukE belonged to space group I4, with unit-cell parameters a = b = 134.50, c = 64.43 Å, and diffracted X-rays to 1.6 Å resolution. The crystals of LukD belonged to space group P2(1)2(1)2(1), with unit-cell parameters a = 48.04, b = 50.99, c = 137.40 Å, and diffracted to 1.9 Å resolution. Molecular replacement using the LukF-PV structure (PDB entry 1pvl) as a template model allowed the identification of an initial structure solution for the LukD data. In the case of LukE, a solution comprising only a single copy of the search model (LukS-PV; PDB entry 1t5r) was found, although the unit-cell parameters indicated that up to three molecules could be accommodated in the asymmetric unit.


Assuntos
Proteínas de Bactérias/química , Exotoxinas/química , Staphylococcus aureus/química , Cristalização , Cristalografia por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...